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Abstract
Young	 children	 can	 quickly	 and	 intuitively	 represent	 the	 number	 of	 objects	 in	 a	
	visual	scene	through	the	Approximate	Number	System	(ANS).	The	precision	of	the	
ANS	–	indexed	as	the	most	difficult	ratio	of	two	numbers	that	children	can	reliably	
discriminate	–	is	well	known	to	improve	with	development:	whereas	infants	require	
relatively	 large	 ratios	 to	 discriminate	 number,	 children	 can	 discriminate	 finer	 and	
finer	changes	in	number	between	toddlerhood	and	early	adulthood.	Which	factors	
drive	the	developmental	improvements	in	ANS	precision?	Here,	we	investigate	the	
influence	of	four	non-	numeric	dimensions	–	area,	density,	line	length,	and	time	–	on	
ANS	development,	exploring	the	degree	to	which	the	ANS	develops	independently	
from	these	other	dimensions,	from	inhibitory	control,	and	from	domain-	general	fac-
tors	such	as	attention	and	working	memory	that	are	shared	between	these	tasks.	A	
sample	of	185	children	between	the	ages	of	2	and	12	years	completed	five	discrimi-
nation	tasks:	approximate	number,	area,	density,	length,	and	time.	We	report	three	
main	 findings.	 First,	 logistic	 growth	models	 applied	 to	 both	 accuracy	 and	Weber	
fractions	 (w;	 an	 index	of	ANS	precision)	across	age	 reveal	distinct	developmental	
trajectories	 across	 the	five	dimensions:	while	 area	and	 length	develop	by	adoles-
cence,	time	and	density	do	not	develop	fully	until	early	adulthood,	with	ANS	preci-
sion	developing	at	an	intermediate	rate.	Second,	we	find	that	ANS	precision	develops	
independently	of	the	other	four	dimensions,	which	in	turn	develop	independently	of	
the	ANS.	Third,	we	find	that	ANS	precision	also	develops	independently	from	indi-
vidual	differences	in	inhibitory	control	(indexed	as	the	difference	in	accuracy	and	w 
between	Congruent	 and	 Incongruent	 ANS	 trials).	 Together,	 these	 results	 are	 the	
first	to	provide	evidence	for	domain-	specific	 improvements	 in	ANS	precision,	and	
place	 children’s	 maturing	 perception	 of	 number,	 space,	 and	 time	 into	 a	 broader	
	developmental	context.

RESEARCH HIGHLIGHTS

•	 The	Approximate	Number	System	(ANS)	provides	children	with	in-
tuitive	but	imprecise	representations	of	number.

•	 Here,	we	test	which	factors	drive	the	improvement	of	ANS	preci-
sion	with	age	by	comparing	the	developmental	trajectories	of	the	
ANS	with	those	of	area,	density,	line	length,	and	time	representa-
tions	between	toddlerhood	and	adulthood.

•	 This	is	the	first	study	to	report	concurrent	Weber	fractions	for	these	
five	dimensions	across	a	broad	age;	 in	addition,	growth	modelling	
and	 partial	 correlation	 analyses	 revealed	 that	 ANS	 precision	 de-
velops	 independently	of	area,	density,	 length,	and	time,	and	from	
children’s	ability	to	inhibit	non-numeric	dimensions	during	the	ANS	
task.

•	 These	results	place	children’s	developing	sense	of	number,	space,	
and	time	in	a	broader	and	richer	developmental	context.
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1  | INTRODUCTION

Thinking	about	number	and	quantity	is	at	the	heart	of	everything	we	
do:	we	select	the	shortest	line	at	the	grocery	store;	choose	the	least	
dense	 part	 of	 the	 auditorium	 to	 sit	 in;	 estimate	 how	much	wine	 in	
our	glass	 is	enough.	Our	ability	to	reason	about	number,	space,	and	
time	is	foundational	for	other	cognitive	abilities,	and	individual	differ-
ences	in	these	representations	predict	musical	performance	(Grondin	
&	 Killeen,	 2009),	 sports	 performance	 (Witt,	 Linkenauger,	 Bakdash,	
&	 Proffitt,	 2008),	 and	 everyday	 activities	 such	 as	 reasoning	 about	
money	(Marques	&	Dehaene,	2004).	Thus,	understanding	the	ontol-
ogy	 and	 the	 development	 of	 number,	 space,	 and	 time	 representa-
tions	is	of	interest	in	many	subfields	of	psychology	and	neuroscience,	
including	 developmental,	 cognitive,	 comparative	 and	 computational	
psychology.

Although	children’s	early	emerging	 representations	of	 space	and	
time	have	long	been	the	focus	of	study,	research	has	recently	shown	
that	most	human	and	non-	human	animals	also	have	an	intuitive	sense	
of	number,	often	termed	the	Approximate	Number	System	(ANS).	For	
example,	within	hours	of	birth,	newborns	expect	the	number	of	visual	
objects	to	match	perceptually	to	the	number	of	sounds	that	they	hear	
(Izard,	Sann,	Spelke,	&	Streri,	2009).	Later	in	development,	babies	that	
have	habituated	to	a	particular	number	of	objects	 (e.g.	32	dots)	can	
subsequently	 detect	 numerically	 large	 changes	 in	 the	 display	 (e.g.	 a	
change	 to	 16	 dots;	 Feigenson,	Dehaene,	 &	 Spelke,	 2004;	 Jordan	&	
Brannon,	2006;	Xu	&	Spelke,	2000).	The	ANS	has	similarly	been	found	
in	 many	 non-	human	 animals,	 including	 rhesus	 macaques	 (Brannon	
&	Terrace,	1998;	Cantlon	&	Brannon,	2006;	Nieder	&	Miller,	2004),	
rats	 (Meck	 &	 Church,	 1983),	 pigeons	 (Brannon,	Wusthoff,	 Gallistel,	
&	Gibbon,	2001;	Emmerton,	1998),	and	even	guppies	(Piffer,	Agrillo,	
&	Hyde,	2011).	Converging	evidence	from	cognitive,	developmental,	
computational,	 comparative	and	neurophysiological	psychology	sug-
gests	that	the	ANS	is	localized	to	a	particular	brain	region	–	the	intra-
parietal	sulcus	(IPS;	Emerson	&	Cantlon,	2015;	Nieder,	2005;	Piazza,	
Izard,	Pinel,	Le	Bihan,	&	Dehaene,	2004;	Roitman,	Brannon,	&	Platt,	
2007)	 –	 and	 that	 it	 is	 universally	 shared	 across	 different	 cultures,	
including	those	that	do	not	have	words	for	numbers	or	mathematical	
concepts	(Frank,	Everett,	Fedorenko,	&	Gibson,	2008;	Gordon,	2004;	
Pica,	Lemer,	Izard,	&	Dehaene,	2004).

The	cost	of	having	such	an	intuitive	number	system,	however,	is	its	
imprecision.	Our	ability	numerically	to	discriminate	two	sets	of	objects	
depends	on	their	ratio:	discriminating	a	large	ratio,	such	as	30	vs.	10	
dots	 (a	 ratio	of	3.0)	 is	easy	even	for	newborns	 (Xu	&	Spelke,	2000),	
while	discriminating	a	small	ratio,	such	as	15	vs.	14	dots	(a	ratio	of	1.07)	
is	challenging	even	for	most	adults	(Halberda,	Ly,	Wilmer,	Naiman,	&	
Germine,	2012;	Libertus,	Odic,	&	Halberda,	2013).	 Individual	differ-
ences	in	the	ANS	are	typically	indexed	through	each	person’s	Weber	
fraction	(w),	a	behavioral	 index	of	the	noise	in	the	underlying	neural	
tuning	curves	that	represent	number	(Halberda	&	Odic,	2014;	Nieder,	
2005;	Piazza	et	al.,	2004;	Pica	et	al.,	2004).

Work	 by	 Halberda	 and	 colleagues	 (2012)	 demonstrates	 
that	–	despite	the	universality	of	the	ANS	–	there	are	 large	 individual	

differences	in	the	precision	of	the	system	at	virtually	every	age.	ANS	pre-
cision	also	undergoes	significant	developmental	improvement	with	age.	
Thus,	while	a	typical	9-	month-	old	infant	has	a	w	of	about	0.5	(i.e.	can	
reliably	 	discriminate	 ratios	of	about	1.5),	a	 typical	19-	year-	old	college	
student	has	w	values	of	about	0.15	(Cordes	&	Brannon,	2008;	Halberda	
et	al.,	2012;	Libertus	et	al.,	2012;	Xu	&	Spelke,	2000).	ANS	development	
begins	from	very	early	 in	 infancy	and	does	not	peak	until	 late	adoles-
cence	or	early	 	adulthood,	subsequently	declining	 in	old	age	(Halberda	
et	al.,	2012).

Why	does	the	ANS	show	these	large	developmental	changes?	In	
other	words,	what	 are	 the	main	 factors	 that	drive	 the	development	
of	 ANS	 precision?	 The	 existing	 literature	 broadly	 suggests	 three	
possibilities.

The	first	possibility	 is	 that	 the	ANS,	 as	 a	dedicated	 system	 for	
representing	 number,	 may	 develop	 as	 a	 result	 of	 domain-	specific	
effects,	including	the	maturation	of	specific	brain	circuits	that	imple-
ment	 it,	or	alternatively	as	a	 result	of	children’s	 increased	familiar-
ity	with	and	expertise	at	using	the	system.	In	other	words,	the	ANS	
may	develop	for	 its	own	reasons	and	along	 its	own	developmental	
trajectory.	As	an	analogy	 to	 this	explanation,	consider	 the	matura-
tion	of	children’s	visual	acuity:	while	all	typically	developing	children	
are	born	with	the	ability	to	see,	the	development	of	very	specialized	
muscles	 and	 circuits,	 including	 the	 orbital	muscles,	 the	 fovea,	 and	
dedicated	circuits	between	the	eyes	and	the	visual	cortex,	will	lead	
to	 a	 developmental	 peak	 in	 early	 toddlerhood	 (Mayer	 &	 Dobson,	
1982;	Yuodelis	&	Hendrickson,	1986).	Because	 these	muscles	 and	
circuits	 are	 dedicated	 to	 vision,	 one	 can	 state	 that	 –	 despite	 the	
fact	that	many	other	brain	and	body	regions	are	developing	in	par-
allel	with	vision	–	the	development	of	visual	acuity	is	causally	inde-
pendent	 from	 the	development	of,	 for	example,	 audition	or	motor	
control.	Domain-	specific	development	of	 the	ANS	 is	 supported	by	
the	finding	that	its	precision	is	especially	improved	by	education	in	
mathematics	(Piazza,	Pica,	Izard,	Spelke,	&	Dehaene,	2013;	see	also	
Lindskog,	Winman,	&	Juslin,	2014),	and	that	an	infant’s	ANS	preci-
sion	at	6	months	predicts	their	precision	in	preschool	(Starr,	Libertus,	
&	Brannon,	2013).

The	second	possibility	 is	 that	the	development	of	ANS	precision	
has	 nothing	 to	 do	with	 the	ANS	 itself,	 and	 that,	 instead,	 it	may	 be	
capturing	 children’s	 ability	 to	process	 and	discriminate	non-	numeric	
dimensions,	 including	 object	 density,	 surface	 area,	 contour	 extent,	
etc.	 (Cantrell	 &	 Smith,	 2013;	 Dakin,	 Tibber,	 Greenwood,	 Kingdom,	
&	 Morgan,	 2011;	 Defever,	 Reynvoet,	 &	 Gebuis,	 2013;	 Gebuis	 &	
Reynvoet,	2012;	Szucs,	Nobes,	Devine,	Gabriel,	&	Gebuis,	2013).	This	
theory	is	motivated	by	the	observation	that,	on	a	typical	task	measur-
ing	ANS	precision,	participants	are	asked	to	 identify	the	numerically	
larger	set	of	dots	(e.g.	the	number	of	yellow	vs.	blue	dots	in	Figure	1).	
However,	such	a	display	necessarily	contains	information	about	a	host	
of	non-	numeric	dimensions,	including	the	size	and	density	of	the	dots.	
Children	may	perform	above	chance,	then,	not	because	they	have	an	
intuitive	number	system,	but	instead	by	discriminating	the	myriad	of	
correlated	non-	numeric	dimensions.	Hence,	development	 in	number	
discrimination	 tasks	 may,	 in	 fact,	 simply	 reflect	 an	 improvement	 in	
these	non-	numeric	dimensions.
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The	idea	that	ANS	precision	may	be	contaminated	by	non-	numeric	
dimensions	 is	 supported	 by	 arguments	 for	 a	 generalized	magnitude	
system,	the	hypothesized	unified	sense	of	magnitude	that	underpins	
all	 reasoning	 about	 number,	 space,	 and	time	 (Bueti	&	Walsh,	 2009;	
Lourenco	&	Longo,	2010,	2011;	Walsh,	2003).	The	existence	of	 the	
generalized	magnitude	 system	 is	 supported	 by	 several	 key	 findings.	
First,	many	non-	numeric	dimensions,	especially	area	and	density,	influ-
ence	number	discrimination	performance	(e.g.	participants	frequently	
select	 the	denser	display	as	 the	more	numerous;	Dakin	et	al.,	2011;	
Durgin,	1995;	Gebuis	&	Reynvoet,	2012;	Szucs	et	al.,	2013).	Second,	
there	 are	 a	 number	 of	 cross-	over	 and	 association	 effects	 between	
number,	 space,	 and	 time,	 from	 infancy	 onwards	 (de	 Hevia,	 Izard,	
Coubart,	Spelke,	&	Streri,	2014;	Lourenco	&	Longo,	2010),	 including	
effects	showing	that	the	perception	of	large	numbers	biases	our	atten-
tion	 towards	 the	 right	 side	of	 space	 (Fischer,	Castel,	Dodd,	&	Pratt,	
2003;	Wood,	Willmes,	Nuerk,	 &	 Fischer,	 2008)	 and	 towards	 longer	
durations	 (Walsh,	 2003).	Third,	 research	 has	 repeatedly	 shown	 that	
number,	space,	and	time	representations	are	all	instantiated	in	the	IPS	
(Bueti	&	Walsh,	2009;	Pinel,	Piazza,	Le	Bihan,	&	Dehaene,	2004),	that	
administration	of	electrical	stimulation	to	this	region	affects	number,	
space,	and	time	perception	(Cappelletti	et	al.,	2013),	and	that	single-	
unit	recordings	reveal	an	overlap	in	the	neurons	that	code	for	number	
and	line	length	(Tudusciuc	&	Nieder,	2007).	Under	some	formulations	
of	 this	 theory,	 the	 generalized	magnitude	 system	differentiates	 into	
several	 sub-	systems	 as	 children	 learn	 about	 and	 interact	 with	 the	
world	(Cantrell	&	Smith,	2013;	Lourenco	&	Longo,	2010,	2011),	while	
others	argue	that	the	generalized	magnitude	system	persists	deep	into	
adulthood,	providing	a	common	currency	by	which	we	represent	and	
reason	 about	 magnitude	 (Bueti	 &	Walsh,	 2009;	 Fabbri,	 Cancellieri,	
&	Natale,	2012;	Lu,	Mo,	&	Hodges,	2011;	Xuan,	Zhang,	He,	&	Chen,	
2007).	Hence,	ANS	development	could	instead	be	the	development	of	
a	single,	unified,	generalized	magnitude	system,	and	thus	 the	devel-
opment	of	the	ANS	should	be	tightly	coupled	to	the	development	of	
space	and	time	representations.

The	third	possibility	is	that	the	primary	factor	driving	ANS	devel-
opment	is	the	maturation	of	various	domain-	general	abilities,	includ-
ing	 attention,	 working-	memory,	 inhibitory	 control,	 or	 more	 general	
parietal	 lobe	maturation.	 For	 example,	 Xenidou-Dervou,	 De	 Smedt,	
van	der	Schoot,	and	van	Lieshout	 (2013)	have	shown	that	ANS	dis-
crimination	tasks	put	a	load	on	working	memory,	while	Ratcliff,	Love,	
Thompson,	 and	 Opfer	 (2012)	 have	 shown	 that	 various	 decision-	
making	 factors,	 including	 response	 biases,	 play	 into	 children’s	 and	
adult’s	performance.	One	especially	 likely	factor	that	may	drive	ANS	

development	 is	 children’s	 improving	 inhibitory	 control:	 Gilmore	 and	
colleagues	(2013)	have	shown	that	ANS	precision	at	least	partially	cap-
tures	how	well	children	perform	on	trials	in	which	they	have	to	inhibit	
various	non-	numeric	dimensions,	such	as	size,	in	order	to	answer	the	
number	 question	 correctly	 (i.e.	 Incongruent	 trials,	 where	 the	 more	
numerous	dots	are	smaller	than	the	less	numerous	dots),	as	opposed	
to	trials	where	various	non-	numeric	dimensions	correlate	with	number	
(i.e.	Congruent	trials,	where	the	more	numerous	dots	are	also	bigger).	
ANS	development,	then,	may	simply	be	capturing	the	development	of	
children’s	ability	 to	precisely	attend	 to	number	as	opposed	 to	other	
dimensions	 (although	 see	DeWind,	Adams,	 Platt,	 &	 Brannon,	 2015;	
Keller	&	Libertus,	2015;	Starr	&	Brannon,	2015b).

Overall,	 theories	 accounting	 for	 the	 development	 of	ANS	preci-
sion	can	be	split	 into	 three	 (non-	mutually	exclusive)	possibilities:	 (1)	
domain-	specific	 ANS	 development,	 (2)	 the	 development	 of	 several	
other	non-	numeric	dimensions,	including	area,	density,	line	length	and	
time,	and	(3)	the	maturation	of	domain-	general	abilities	such	as	inhib-
itory	control.

The	existing	data	on	ANS	development	and	its	relationship	to	non-	
numeric	 dimensions	 unfortunately	 cannot	 adjudicate	 among	 these	
three	possibilities.	First,	few	studies	have	examined	the	development	
of	 the	 ANS	 in	 conjunction	 with	 other	 dimensions.	 Odic,	 Libertus,	
Feigenson,	 and	 Halberda	 (2013;	 see	 also	 Odic,	 Pietroski,	 Hunter,	
Lidz,	&	Halberda,	 2013)	 showed	 that	ANS	 precision	 develops	 inde-
pendently	from	surface-	area	precision,	but	only	studied	a	narrow	age-	
range	of	3-		to	6-	year-	old	children.	Work	by	Starr	and	Brannon	(2015a)	
has	investigated	the	relationship	between	number,	brightness	and	line	
length,	 but	 focused	primarily	on	 correlations	between	 the	precision	
of	these	dimensions,	showing	differences	in	the	correlations	between	
preschoolers	 and	 adults.	 Correlations	 between	 dimensions,	 how-
ever,	can	stem	from	several	factors,	including	shared	domain-	general	
skills	such	as	working	memory	(see	Odic	et	al.,	2016	and	Van	Opstal	
&	Verguts,	2013),	making	it	difficult	to	make	any	strong	claims	about	
the	 co-	development	 of	 these	 dimensions.	 Other	 studies	 have	 simi-
larly	 focused	on	 the	development	of	 number	 and	one	or	 two	other	
dimensions,	but	usually	over	a	narrow	age	range	that	does	not	capture	
the	entire	developmental	trajectory	for	these	dimensions	(e.g.	Abreu-	
Mendoza	&	Arias-	Trejo,	2015;	Brannon,	Lutz,	&	Cordes,	2006;	Dormal	
&	Pesenti,	2012;	Droit-	Volet	&	Wearden,	2001).	Here,	we	report	data	
on	a	broad	age-	range	of	participants,	namely	2-		 to	12-	year-	old	chil-
dren	 and	 college-	aged	 adults,	 and	 across	 five	 discrimination	 tasks:	
number,	area,	density,	line	length	and	time.	Unlike	previous	work,	we	
can	 quantify	 the	 developmental	 trajectory	 for	 each	 dimension,	 and	

F I G U R E  1 Example	stimuli	from	the	five	discrimination	tasks.	In	the	Time	task,	the	two	characters	are	animated	and	hold	their	breath	for	a	
certain	amount	of	time
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examine	whether	number	develops	 independently	from	any	or	all	of	
these	dimensions.

The	second	major	challenge	 in	understanding	ANS	development	
has	 been	 how	 to	 control	 for	 all	 possible	 domain-	general	 factors,	
including	attention,	working	memory,	inhibitory	control,	etc.,	that	may	
be	responsible	for	the	relationship	between	the	ANS	and	non-	numeric	
dimensions,	as	well	as	 for	any	developmental	effects.	Here,	we	take	
a	novel	approach	to	this	problem:	rather	than	attempting	to	measure	
each	domain-	general	 ability	 individually,	we	 instead	 rely	on	 the	 fact	
that,	whatever	the	range	of	possible	domain-	general	factors	that	affect	
ANS	development	may	be,	they	must	be	shared	between	the	ANS	and	
the	 four	 non-	numeric	 dimensions.	 Droit-Volet,	 Clément,	 and	 Fayol,		
(2008),	for	example,	have	demonstrated	that	time	discrimination	tasks	
put	a	large	load	on	children’s	working	memory;	hence,	by	controlling	
for	time	discrimination	performance	when	examining	ANS	develop-
ment,	we	can	also	largely	control	for	working	memory	differences	in	
ANS	precision.	Because	attention,	decision-	making	factors,	and	even	
general	parietal	lobe	development	should	all	be	shared	across	number,	
area,	density,	length,	and	time,	controlling	for	these	factors	should	also	
largely	control	for	the	various	domain-	general	abilities	that	could	be	
driving	ANS	development	(see	Odic	et	al.,	2016	for	evidence	that	this	
approach	 is	 appropriate	 for	 number	 and	time	 representations	when	
concurrently	measuring	working	memory).

The	goals	of	our	experiment	are,	thus,	twofold:	besides	being	the	
first	to	report	developmental	data	on	a	range	of	quantity	discrimina-
tion	tasks	across	a	broad	age	range,	we	also	expect	to	find	different	
patterns	of	results	depending	on	which	of	the	three	theories	reviewed	
above	 is	 the	best	explanation	for	ANS	development.	 If	 the	develop-
ment	of	the	ANS	is	accounted	for	by	the	development	of	a	generalized	
magnitude	 system,	we	 should	 find	 that	 all	 age-	related	 variability	 in	
ANS	precision	is	accounted	for	by	the	age-	related	differences	in	area,	
density,	length	and	time	precision.	In	addition,	because	these	dimen-
sions	have	been	shown	to	be	represented	 in	the	 IPS,	controlling	for	
these	dimensions	should	also	largely	control	for	more	domain-	general	
development	of	the	parietal	 lobe	and	the	IPS	 itself.	Furthermore,	by	
examining	the	development	of	children’s	performance	on	Congruent	
versus	 Incongruent	ANS	 trials,	we	 can	 assess	 the	 role	 of	 inhibitory	
control	development	on	the	ANS	(Gilmore	et	al.,	2013).	Importantly,	if	
we	found	that	the	ANS	develops	along	distinct	developmental	trajec-
tories	and	independently	from	area,	 length,	time,	density	and	inhibi-
tory	control,	we	would	have	evidence	for	an	important	role	of	domain-	
specific	ANS	development.

2  | EXPERIMENT

2.1 | Participants

A	 total	 of	 185	 children	between	 the	 ages	of	2	 and	12	participated	
in	 the	 study	 (93	 boys	 and	 92	 girls;	 see	 Table	1).	 An	 additional	 22	
children	were	excluded	because	they	did	not	complete	more	than	a	
third	of	 the	 tasks,	mostly	as	a	 result	of	 inattentiveness.	All	 children	
were	 individually	tested	at	the	 local	science	museum	–	Vancouver’s	
Telus	 ScienceWorld	 LivingLab	 –	 in	 a	 dedicated,	 sound-	attenuated	 T
A
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room.	 Parents	 waited	 outside	 the	 room	 while	 the	 child	 completed	
the	task.	All	children	were	given	a	sticker	as	a	prize	for	participating.	
An	additional	15	undergraduates	participated	for	course	credit	at	the	
University	of	British	Columbia.

2.2 | Methods and procedures

All	 stimuli	 were	 presented	 on	 a	 11.3ʺ	Macbook	 Air	 using	 custom-	
made	Psychtoolbox-	3	scripts	(Brainard,	1997).	These	scripts	are	freely	
available	for	download	and	for	future	research	use	(http://odic.psych.
ubc.ca/scripts/).	Children	were	seated	in	front	of	the	computer	with	
the	experimenter	seated	next	to	them.	In	order	to	reduce	the	poten-
tial	 effects	 of	motor	 development	 on	 our	 results,	 the	 experimenter	
always	pushed	the	buttons	and	the	child	was	asked	to	respond	to	each	
trial	verbally	or	by	pointing.

We	tested	discrimination	performance	on	five	dimensions:	approxi-
mate	number,	surface	area,	density,	line	length,	and	time,	each	described	
in	detail	below	and	illustrated	in	Figure	1.	Because	pilot	testing	showed	
that	preschoolers	could	not	complete	all	five	tasks	in	a	single	sitting,	we	
randomly	split	all	children	 into	one	of	two	conditions:	children	either	
completed	 Number/Area/Density	 or	 Number/Length/Time	 tasks1	 .	
Each	of	these	conditions	began	with	three	trials	from	each	dimension	
(e.g.	three	trials	of	Number,	followed	by	three	trials	of	Area,	followed	
by	three	trials	of	Density)	that	allowed	the	experimenter	to	explain	the	
task	to	the	child.	Subsequently,	 the	trials	were	randomized	and	trials	
of	 the	 three	 dimensions	were	 fully	 intermixed;	 this	 allowed	 us	 both	
to	control	for	any	task-	order	effects	and	to	keep	the	child’s	attention	
for	longer.	Adult	participants	completed	all	five	tasks	in	an	intermixed	
order;	unlike	children,	however,	adults	were	allowed	to	push	their	own	
buttons	rather	than	respond	verbally	or	by	pointing.

Participants	 received	 auditory	 feedback	 from	 the	 computer	
throughout	 the	 entire	 experiment.	 In	 general,	 children	 took	 about	
5–8	minutes	to	complete	the	experiment,	and	adult	participants	took	
about	8–12	minutes	to	complete	the	experiment.

2.2.1 | Number task

Participants	were	shown	displays	of	spatially	separated	blue	and	yellow	
dots	within	two	rectangular	frames,	as	shown	in	Figure	1,	and	asked	to	
identify	the	side	with	more	dots.	Each	set	was	associated	with	a	cartoon	
character	(e.g.	Spongebob	or	a	Smurf).	The	dots	stayed	on	the	screen	
for	500	milliseconds.	The	ratio	of	the	dots	was	varied	to	control	for	dif-
ficulty,	 and	could	 take	 the	 following	values:	2.0	 (20	vs.	10	dots),	1.5,	
1.2	or	1.06.	Each	ratio	was	presented	eight	times,	yielding	a	total	of	32	
Number	trials.	In	an	effort	to	control	for	children’s	use	of	non-	numeric	
dimensions,	we	controlled	for	the	average	and	the	cumulative	area	of	
the	dots.	In	addition,	by	partialling	out	the	individual	differences	in	the	
four	non-	numeric	discrimination	tasks,	we	can	also	control	for	any	con-
tributions	of	area,	density,	length,	and	time	perception	to	the	Number	
task.	On	half	of	the	trials,	the	total	surface	area	was	congruent	with	the	
number	of	dots	(i.e.	the	set	with	more	dots	had	a	higher	cumulative	sur-
face	area;	Congruent	trials),	and	on	the	other	half	of	the	trials,	the	total	
surface	area	was	incongruent	with	the	number	of	dots	(i.e.	the	set	with	

more	dots	had	a	lower	cumulative	surface	area;	Incongruent	trials).	As	
discussed	above,	previous	work	by	Gilmore	and	colleagues	(2013)	has	
suggested	that	the	difference	between	these	two	types	of	trials	may	be	
indicative	of	children’s	inhibitory	control.

2.2.2 | Area task

Participants	were	shown	displays	of	two	amorphous	blobs	–	one	blue	
and	one	yellow	(Figure	1)	–	and	were	asked	to	identify	the	larger	blob.	
Each	blob	was	presented	in	a	rectangular	frame	and	was	associated	
with	a	cartoon	character.	The	blobs	stayed	on	the	screen	for	500	mil-
liseconds.	The	ratio	of	the	blob	sizes	was	varied	to	control	for	diffi-
culty,	and	could	take	the	following	values:	2.0	(212	vs.	106	pixel2),	1.5,	
1.2	or	1.06.	Each	ratio	was	presented	eight	times,	yielding	a	total	of	
32	area	trials.	Note	that	–	in	contrast	to	the	previous	work	by	Odic,	
Libertus,	et	al.	(2013)	–	the	two	blobs	were	presented	spatially	sepa-
rated	in	order	to	better	match	the	task	demands	of	the	number	task.

2.2.3 | Density task

Participants	were	shown	two	clouds	of	blue	and	yellow	dots	that	varied	
in	density	(Figure	1).	These	trials	were	generated	in	one	of	two	ways:	
on	half	the	trials,	we	kept	the	number	of	dots	constant	at	100	for	both	
sides,	 but	 varied	 the	 total	 circular	 convex	hull	within	which	 the	dots	
were	drawn.	On	the	other	half	of	the	trials,	we	kept	the	convex	hull	con-
stant	in	a	circle	with	a	radius	of	70	pixels,	but	varied	the	total	number	of	
dots.	Density	was	defined	as	the	number	of	dots	per	pixel	of	convex	hull	
area.	Thus,	for	example,	a	ratio	of	2.0	could	be	instantiated	in	one	of	two	
ways:	either	by	doubling	the	area	of	the	convex	hull	from	15	393	pixels	
to	30	787	pixels	 (i.e.	changing	the	radius	from	70	to	99	pixels),	or	by	
halving	the	number	of	dots	from	100	to	50;	in	either	case,	the	number	
of	dots/pixel	is	0.003.	As	discussed	in	the	Results	section,	participants	
performed	identically	on	these	two	trial	types.	We	found	that	children	
did	not	understand	the	word	 ‘denser’.	Thus,	 in	order	 to	help	children	
understand	the	task,	we	gave	them	a	background	story	about	the	dots	
being	 lemmings	 that	needed	to	huddle	 together	 for	warmth;	children	
were	asked	to	identify	whether	the	blue	or	the	yellow	lemmings	were	
warmer.	 The	 two	 clouds	 of	 dots	 were	 presented	 within	 rectangular	
frames	and	stayed	on	the	screen	for	500	milliseconds.	The	ratio	of	the	
densities	was	varied	to	control	for	difficulty,	and	could	take	the	follow-
ing	values:	2.0	(0.006	vs.	0.003	dots/pixel),	1.5,	1.2	or	1.06.	Each	ratio	
was	presented	eight	times,	yielding	a	total	of	32	density	trials.

2.2.4 | Length task

Participants	were	shown	a	blue	 line	and	a	yellow	line	drawn	on	the	
screen	 (Figure	1),	and	were	asked	to	 identify	which	 line	was	 longer.	
Each	line	was	drawn	within	a	rectangular	frame	associated	with	a	car-
toon	character.	The	lines	stayed	on	the	screen	for	500	milliseconds.	
The	ratio	of	the	line	lengths	was	varied	to	control	for	difficulty,	and	
could	take	the	following	values:	2.0	(100	vs.	50	pixel),	1.5,	1.2	or	1.06.	
In	order	to	make	sure	that	children	did	not	simply	compare	the	tops	
of	 lines,	 each	 line	was	 randomly	 oriented	 along	 its	 center	 axis;	 the	

http://odic.psych.ubc.ca/scripts/
http://odic.psych.ubc.ca/scripts/
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difference	 in	orientation	was	always	at	 least	15	degrees.	Each	 ratio	
was	presented	eight	times,	yielding	a	total	of	32	length	trials.

2.2.5 | Time task

Participants	were	introduced	to	two	characters	–	a	dog	and	a	panda	
–	who	had	a	breath-	holding	competition.	 In	counterbalanced	order,	
each	animal	would	animate	to	hold	their	breath	for	a	particular	dura-
tion	lasting	between	500	and	2000	milliseconds	(see	Figure	1).	After	
each	animal	had	held	their	breath,	the	children	were	asked	to	identify	
which	animal	held	their	breath	for	longer.	The	animals	were	presented	
within	 rectangular	 frames.	The	 ratio	of	 the	durations	was	varied	 to	
control	for	difficulty,	and	could	take	the	following	values:	2.0	 (1200	
vs.	600	milliseconds),	1.5,	1.2	or	1.06.	Each	ratio	was	presented	eight	
times,	yielding	a	total	of	32	time	trials.

3  | RESULTS

We	report	our	analyses	in	several	steps.	First,	we	test	for	standard	ratio	
effects	within	each	dimension	and	test	whether	any	of	the	dimensions	
were	more	accurate	than	the	others.	Second,	we	model	each	participant’s	
data	to	a	standard	psychophysical	model	used	in	the	literature	to	estimate	
Weber	fractions	(w)	and	lapse/guessing	rates	for	each	dimension.	Third,	
we	model	the	changes	in	the	accuracy	and	w	in	each	dimension	with	age,	
including	estimating	the	age	of	maturity	for	each	dimension.	Finally,	and	
most	importantly,	we	test	whether	the	developmental	changes	in	num-
ber	can	be	accounted	for	by	the	development	of	area,	density,	 length,	
and/or	time,	or	by	inhibitory	control	(the	difference	between	Congruent	
and	Incongruent	trials).	The	correlations	between	dimensions	while	con-
trolling	for	any	age	effects	are	reported	in	the	Supplementary	Material.	
All	of	the	reported	ANOVAs	are	corrected	for	sphericity.

3.1 | Ratio effects

The	 histograms	 and	 average	 accuracy	 for	 each	 dimension	 are	 pre-
sented	 in	 Table	1	 and	 Figure	2	 (top).	 Consistent	 with	Weber’s	 law,	

each	dimension	showed	a	clear	ratio	effect.	A	3	(Task:	Number,	Area,	
Density)	×	4	 (Ratio:	 2.0,	 1.5,	 1.2,	 1.06)	 repeated-	measures	 ANOVA	
with	accuracy	as	the	dependent	variable	(DV)	showed	a	main	effect	
of	Ratio	 [F(3,	300)	=	115.92;	p <	.001]	 and	Task	 [F(2,	200)	=	168.34;	
p < .001],	and	a	significant	Task	×	Ratio	interaction	[F(6,	600)	=	18.24;	
p < .001].	Contrasts	revealed	that	this	main	effect	of	Task	was	carried	
by	significantly	better	performance	in	Number	(M = 72.54;	SE	=	1.21)	
compared	with	Density	[M = 60.63; SE	=	1.31;	t(99)	=	9.12;	p < .001],	
and	by	significantly	better	performance	in	Area	(M = 83.23;	SE	=	1.04)	
compared	with	Density	[t(101)	=	18.37;	p < .001]	and	compared	with	
Number	[t(111)	=	−9.78;	p < .001].

An	 analogous	ANOVA	with	 Number,	 Time,	 and	 Length	 likewise	
showed	 a	 main	 effect	 of	 Ratio	 [F(2,	182)	=	73.82;	 p < .001] and 
Task	 [F(3,	273)	=	92.34;	 p < .001],	 and	 no	 Task	×	Ratio	 interaction	
[F(6,	546)	=	1.78;	 p = .10].	 Contrasts	 revealed	 that	 the	 main	 effect	
of	 Task	 was	 driven	 by	 significantly	 better	 performance	 in	 Number	
(M = 73.76; SE	=	1.47)	 compared	 with	 Time	 [M = 67.23; SE	=	1.59;	
t(95)	=	4.27;	p < .05],	and	by	significantly	better	performance	in	Length	
(M = 83.1;	 SE	=	1.44)	 compared	 with	 Time	 [t(97)	=	10.97;	 p < .001] 
and	compared	with	Number	[t(106)	=	−9.12;	p < .001].

An	additional	 independent	 samples	 t-	test	 showed	no	 significant	
difference	between	Time	and	Density	accuracy	[t(88)	=	0.39;	p = .69],	
nor	 between	 Length	 and	 Area	 accuracy	 [t(92)	=	0.12;	 p = .90].	 We	
also	 found	 no	 effect	 of	 Condition	 on	 the	 Number	 task:	 children	 in	
the	 Number/Area/Density	 condition	 performed	 equivalently	 well	
(M = 70.7%,	 n = 84,	 SD	=	15.65%)	 to	 the	 children	 in	 the	 Number/
Length/Time	condition	[M = 69.4%,	n = 99,	SD	=	13.44%;	t(181)	=	.62,	
p = .54].	Finally,	we	did	not	find	any	difference	between	the	area-		vs.	
number-	doubling	Density	Task	trials	[t(89)	=	0.37;	p = .71].

Taken	 together,	 these	 results	 suggest	 that	 all	 five	 dimensions	
showed	 ratio-	dependent	performance,	 consistent	with	Weber’s	 law,	
and	that	Area	and	Length	accuracy	was	superior	to	Number	accuracy,	
which	 in	 turn	was	 significantly	 better	 than	Time	 and	Density	 accu-
racy.	These	results	broadly	replicate	previous	work	 (Abreu-	Mendoza	
&	Arias-	Trejo,	2015;	Droit-	Volet	et	al.,	2008;	Odic	et	al.,	2016;	Odic,	
Libertus,	et	al.,	2013;	Starr	&	Brannon,	2015a,	2015b)	and	further	add	
information	about	children’s	perception	of	density.

F I G U R E  2 Histograms	of	average	percentage	correct	and	best-	fit	Weber	fractions	for	each	of	the	five	tasks
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3.2 | Weber fractions

Weber	 fractions	–	 an	 index	of	 the	underlying	precision	of	 quantity	
representations	–	were	modelled	using	a	two-	parameter	psychophysi-
cal	model	previously	used	by	Halberda	and	Feigenson	(2008)	and	Pica	
and	colleagues	 (2004).	This	model	assumes	that	the	underlying	rep-
resentations	 of	 number,	 time,	 density,	 etc.	 are	 normally	 distributed	
tuning	 curves	 with	 the	 single	 parameter	w	 indexing	 their	 standard	
deviation	(i.e.	precision;	for	a	review,	see	Halberda	&	Odic,	2014).	In	
addition	to	this	standard	assumption,	the	model	allows	for	a	second	
parameter	–	the	lapse	rate	–	that	can	account	for	a	constant	percent-
age	of	trials	that	participants	may	have	been	guessing	(e.g.	a	lapse	rate	
of	0.10	indicates	that	participants	were	randomly	guessing	on	5%	of	
trials,	independent	of	ratio).	More	formally,	Weber	fractions	and	lapse	
rates	were	estimated	using	the	equation

where	Φ	is	the	Gaussian	cumulative	distribution	function.	This	model	
was	 fitted	 to	 each	 participant’s	 data	 for	 each	 task	 using	 R’s	mle2 
function	under	the	assumption	of	normally	distributed	errors,	which	
converges	on	the	best-	fit	parameters	by	minimizing	the	negative	log-	
likelihood	value.

The	 histogram	 and	 average	 w	 values	 and	 lapse	 rates	 for	 each	
dimension	are	presented	in	Table	2	and	Figure	2.	Consistent	with	pre-
vious	work,	we	found	that	the	model	could	not	successfully	fit	every	
participant’s	data,	most	often	because	some	participants	were	guess-
ing	 randomly	on	all	 of	 the	 trials	 and	 thus	had	an	accuracy	of	 about	
50%.	As	a	result,	these	participants	had	either	non-	convergent	mod-
els or unreasonable w	 estimates	 (i.e.	 values	 of	 more	 than	 3.0)	 and	
extremely	high	lapse	rates	(i.e.	1.00,	indicating	pure	guessing	across	all	
ratios).	These	children	were	excluded	from	any	subsequent	w analyses 
(see	Table	2).	In	the	remaining	analyses,	we	always	report	data	using	
both	accuracy	and	w	in	order	to	maximize	our	sample	and	demonstrate	
that	no	reported	finding	is	due	to	the	excluded	w	data.

The	average	w	values	found	in	our	five	tasks	are	consistent	with	
those	previously	measured	 in	 the	 literature	 for	number	 (Halberda	&	
Feigenson,	2008;	Piazza	et	al.,	2010),	area	(Odic,	Libertus,	et	al.,	2013;	
Odic,	Pietroski,	et	al.,	2013),	time	(Droit-	Volet	et	al.,	2008;	Odic	et	al.,	
2016),	and	length	(Droit-	Volet	et	al.,	2008;	Starr	&	Brannon,	2015a).	
The	 results	also	provide	 the	first	estimates	of	density	w	 in	children.	
In	 replication	of	 the	above	results	with	accuracy,	we	found	that	 the	
Number	 w	 (M = 0.32; SE	=	0.001)	 was	 significantly	 worse	 than	 the	
Area	w	 [M = 0.19;	 SE	=	0.001;	 t(82)	=	4.33;	 p < .001]	 and	 Length	w 
[M = 0.13; SE	=	0.001;	 t(78)	=	4.57;	p < .001],	but	significantly	better	
than	the	Density	w	[M = 0.51; SE	=	0.002;	t(44)	=	4.98;	p < .001],	and	
Time	w	[M = 0.35; SE	=	0.001;	t(55)	=	2.47;	p < .05].

3.3 | Effects of age

We	examined	the	effects	of	age	in	two	ways.	First,	we	examined	pair-
wise	correlations	between	each	dimension	and	age	as	a	continuous	
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variable,	 excluding	 adults	 (whose	 higher	 age	 values	may	 dispropor-
tionally	 affect	 the	 correlations).	Because	w	 values	are	non-	normally	
distributed	 (Figure	2;	 see	 also	 Inglis	 &	 Gilmore,	 2014),	 we	 instead	
used	 Spearman	 rank	 correlations.	 We	 found	 very	 strong	 correla-
tions	 between	 each	 dimension	 and	 age:	 Number	 accuracy	 (r = .67; 
n = 185;	 p < .001)	 and	w	 (Spearman’s	 rho	=	−.64;	 n = 160; p < .001),	
Area	accuracy	(r = .63; n = 99;	p < .001)	and	w	(Spearman’s	rho	=	−.67;	
n = 97;	 p < .001),	 Density	 accuracy	 (r = .53; n = 90;	 p < .001)	 and	w 
(Spearman’s	 rho	=	−.35;	 n = 56; p < .001),	 Length	 accuracy	 (r = .62; 
n = 96;	p < .001)	and	w	(Spearman’s	rho	=	−.64;	n = 86;	p < .001),	and	
Time	accuracy	(r = .64;	n = 85;	p < .001)	and	w	(Spearman’s	rho	=	−.64;	
n = 63; p < .001)2	.	We	found	no	significant	correlations	between	age	
and	 lapse	 rates	with	 the	 exception	 of	 the	Area	 task	 [r(109)	=	−.23;	
p < .05].	The	most	likely	explanation	of	this	result	is	that	our	partici-
pants	guessed	in	an	all-	or-	none	fashion	independent	of	age,	and	par-
ticipants	who	predominantly	guessed	were	excluded	owing	 to	poor	
fits	to	the	w	model.	As	a	result,	lapse	rates	were	excluded	from	future	
analyses.

Next,	 we	 grouped	 each	 participant	 into	 one	 of	 six	 age	 groups	
(Table	1	and	Figure	3).	A	6	(Age	Group:	3,	5,	7,	9,	11,	and	Adults)	×	3	
(Task:	Number,	Area,	Density)	mixed-	measures	ANOVA	over	accuracy	
replicated	the	above	main	effect	of	Task	[F(2,	192)	=	85.45;	p < .001],	
but	also	showed	a	main	effect	of	Age	Group	[F(5,	96)	=	15.13;	p < .001] 
and	 an	Age	Group	×	Task	 interaction	 [F(10,	192)	=	2.00;	p < .05].	As	
can	 be	 seen	 in	 Table	1,	 the	 difference	 between	 Number,	 Area	 and	
Density	accuracy	increases	and	peaks	at	about	age	7,	then	decreases	
and	stabilizes	at	about	age	11.	An	analogous	ANOVA	with	Number,	
Length	 and	 Time	 showed	 a	 main	 effect	 of	 Task	 [F(2,	184)	=	47.76;	
p < .001],	Age	Group	[F(5,	96)	=	3.23;	p < .01]	and	an	Age	Group	×	Task	
interaction	[F(10,	184)	=	2.94;	p < .01].	As	with	Area	and	Density,	the	
difference	 in	 accuracy	 between	Number,	 Length	 and	Time	 peaks	 at	
about	age	7,	 then	decreases	and	stabilizes.	These	results	held	 if	 the	
adults	were	excluded	from	the	ANOVA.	Together,	these	results	show	
that	 each	 dimension	 improved	with	 age,	 but	 that	 some	 dimensions	
improved	faster	than	others.

A	pair	of	mixed-	level	ANOVAs	over	w	values	revealed	the	same	pat-
tern	of	results	(Figure	3).	A	6	(Age	Group:	3,	5,	7,	9,	11,	and	Adults)	×	3	
(Task:	 Number,	Area,	 Density)	 mixed-	measures	ANOVA	 over	w val-
ues	 showed	 a	 main	 effect	 of	 Task	 [F(2,	92)	=	11.72;	 p < .001],	 Age	
Group	[F(5, 46)	=	2.91;	p < .05],	and	an	Age	Group	×	Task	interaction	
[F(10,	92)	=	2.24;	p < .05].	An	analogous	ANOVA	over	Number,	Length	
and	Time	showed	a	main	effect	of	Task	[F(2,	112)	=	5.69;	p < .001],	Age	
Group	[F(1,	56)	=	7.88;	p < .001],	and	an	Age	Group	×	Task	interaction	
[F(10,	112)	=	5.69;	p < .001].	Thus,	Weber	fractions	also	improve	with	
age,	 but,	 once	 again,	 we	 find	 that	 some	 dimensions	 show	 a	 faster	
improvement	than	others.

3.4 | Logistic growth modelling

The	 analyses	 thus	 far	 demonstrate	 that	 developmental	 trajectories	
for	the	five	dimensions	are	not	identical,	but	they	do	not	reveal	what	
these	 trajectories	 actually	 are.	 In	 order	 to	 determine	 the	 trajectory	
for	 each	 dimension	 and	 estimate	 the	 approximate	 age	 of	maturity,	

we	fitted	the	developmental	data	from	each	dimension	to	a	series	of	
logistic	growth	models.	Logistic	growth	models	assume	that	develop-
ment	begins	at	some	age	of	onset	and	continues	at	a	constant	 rate	
until	an	asymptote	is	reached	and	developmental	growth	peaks.	We	
found	that	logistic	growth	models	were	superior	to	any	other	model	
we	 fitted	 to	 the	 accuracy	 or	w	 data,	 including	 piecewise	 linear,	 log	
and	power	models.	A	major	 advantage	of	 logistic	growth	models	 is	
that	 they	 estimate	 the	 growth	 rate	 –	 the	 speed	 at	which	 develop-
ment	 reaches	maturity	 –	 independently	 from	 the	 peak	 itself.	 Thus,	
for	example,	 if	 two	dimensions	have	different	peak	accuracy	 levels,	
a	 non-	logistic	model	 (e.g.	 a	 power	model)	would	mistake	 the	 lower	
asymptote	in	one	dimension	for	evidence	for	continuing	developmen-
tal	growth.

We	 used	 the	 standard	 three-	parameter	 logistic	 growth	 model	
typically	used	in	the	developmental	literature	(Marceau,	Ram,	Houts,	
Grimm,	 &	 Susman,	 2011;	 Ram	&	Grim,	 2015).	 This	model	 assumes	
that	average	accuracy	or	w	at	each	age	is	based	on	three	parameters:	
a	 (peak	 accuracy	 or	w	 at	 which	 development	 ends),	 1/−b	 (the	 age	
of	developmental	onset),	and	c	 (the	growth	rate;	 lower	values	mean	
faster	growth):

Note	that	because	we	did	not	measure	accuracy	or	w	 in	infancy,	
our	ages	of	onset	are	probably	slightly	inflated.

Accuracy=
a

1+exp(− (b+Age∗ c))

F I G U R E  3 Average	percentage	correct	across	ratios	and	the	best-	
fit	model	for	each	of	the	five	tasks	and	for	each	of	the	six	age	groups.	
All	five	dimensions	show	improvement	with	age	and	ratio-	dependent	
performance	consistent	with	Weber’s	law.	Bars	indicate	±1	SD
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We	fitted	a	separate	logistic	growth	model	over	accuracy	and	w	for	
each	dimension.	The	best-	fitting	parameters	were	determined	using	R’s	
mle2	function,	which	converges	on	parameters	that	minimize	the	nega-
tive	log-	likelihood.	In	order	to	account	for	the	heteroscedasticity	inher-
ent	in	the	w	and	age	data	(i.e.	accuracy	and	w values are more variable in 
younger	children),	the	normally	distributed	regression	error	was	allowed	
to	scale	with	1/Age	(see	also	Odic,	Im,	Eisinger,	Ly,	&	Halberda,	in	press).	
The	best-	fitting	parameters	are	shown	in	Figures	4	and	5	and	in	Table	3.	
We	found	that	these	models	were	an	excellent	fit	to	all	the	data.

The	 estimated	 parameters	 appear	 reasonable	 and	 replicate	 the	
patterns	reported	above.	For	example,	the	estimated	peak	values	are	
consistent	with	the	ANOVAs:	the	peak	accuracy	and	w	for	Density	and	
Time	are	worse	than	the	peaks	for	area	and	line	length,	with	number	
falling	somewhere	between.	Thus,	the	growth	models	suggest	that	the	
difference	 in	 accuracy	 and	w	 among	 these	 five	 dimensions	 persists	
even	once	developmental	growth	is	complete.

Importantly,	 even	 when	 these	 different	 peaks	 are	 accounted	
for,	we	 see	 two	 distinct	 patterns	 in	 the	 developmental	 trajectories:	
whereas	density	and	time	show	slow	onsets	and	growth	rates	–	not	
reaching	 peak	 performance	 until	 young	 adulthood	 –	 number,	 area	
and	 length	 develop	 significantly	 sooner,	 in	 late	 childhood	 and	 early	
adolescence.	Statistically,	we	 found	 that	 the	age	of	maturity	 for	 the	
accuracy	models	was	significantly	later	for	density	compared	with	line-	
length	(Z = 2.16; p = .01),	area	(Z = 1.82;	p = .03)	and	number	(Z = 1.65; 
p = .049),	and	that	age	of	maturity	for	time	was	marginally	later	than	
for	line	length	(Z = 1.56; p = .06).

These	results	were	even	stronger	 for	 the	 logistic	growth	models	
over w:	we	 found	 that	 the	 age	 of	maturity	 for	 number	was	 signifi-
cantly	 earlier	 than	 for	 density	 (Z = 11.51; p < .001),	 earlier	 than	 for	
time	(Z = 3.22; p < .01),	and	significantly	later	than	for	area	(Z	=	3.60;	
p < .01).	Similarly,	the	age	of	maturity	for	area	was	significantly	earlier	
than	for	density	(Z = 12.09;	p < .001)	and	time	(Z = 5.36; p < .01),	and	
the	age	of	maturity	for	lines	was	significantly	earlier	than	for	density	
(Z = 11.11; p < .001)	and	time	(Z = 2.91;	p < .01).

The	 logistic	 growth	model	 data	 suggest	 that	 the	 developmental	
trajectories	 for	 the	 five	 dimensions	 are	 not	 all	 identical:	while	ANS	
precision	 is	 at	 adult-	like	 levels	by	 adolescence,	time	and	density	do	
not	fully	develop	until	early	adulthood;	Length	and	Area,	meanwhile,	
develop	either	at	 the	same	time	as	or	slightly	sooner	than	the	ANS.	
Interestingly,	 because	 some	 dimensions	 develop	 and	 peak	 sooner	
than	others,	these	results	also	suggest	that	the	differences	in	accuracy	
between	the	five	dimensions	reach	their	peak	in	early	childhood,	and	
then,	as	Density	and	Time	plateau,	later	stabilize	in	adolescence	and	
adulthood.

3.5 | Partial correlations

Finally,	 we	 turn	 to	 the	 central	 question	 at	 hand	 –	what	 drives	 the	
development	of	number	accuracy	and	w?	Although	the	developmen-
tal	trajectory	modelling	confirms	that	Number	develops	at	a	different	
rate	from	the	other	dimensions,	it	does	not	provide	evidence	for	any	

F I G U R E  4 For	each	task,	the	average	percentage	correct	for	each	
participant	and	the	best-	fit	logistic	growth	model.	The	gray	shading	
indicates	the	95%	confidence	interval	around	the	model

F I G U R E  5 For	each	task,	the	Weber	Fraction	(w)	for	each	
participant	fit	by	that	model,	along	with	the	best-	fit	logistic	growth	
model.	The	gray	shading	indicates	the	95%	confidence	interval	
around	the	model
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independence	 between	Number	 and	 the	 development	 of	 the	 other	
four	 dimensions.	 In	 order	 to	 examine	whether	 the	 development	 of	
Number	 is	actually	 independent	from	the	development	of	the	other	
four	dimensions,	we	carried	out	a	set	of	partial	correlations,	examin-
ing	whether	Number	continues	to	correlate	with	age	even	when	the	
accuracy and w	values	of	the	other	four	dimensions	are	controlled	for.

As	shown	in	Figure	6,	we	found	a	significant	correlation	between	
Number	 accuracy	 and	 age,	 even	 when	 controlling	 for	 accuracy	 in	
both	Area	and	Density	(r = .44;	n = 85;	p < .001)	and	when	controlling	
for	 accuracy	 in	 Length	 and	Time	 (r = .38;	n = 80;	p < .001).	 Identical	
results	were	obtained	with	Number	w	values	with	Spearman	partial	
correlations	(Area/Density:	rho	=	−.45,	n = 48,	p < .001;	Length/Time:	
rho	=	−.37,	 n = 52,	 p < .001).	 These	 results	 remain	 identical	 when	
removing	the	group	of	2-		and	3-	year-	old	children	who	are	near	chance	
performance	(controlling	for	Area	and	Density:	n = 78,	r = .37,	p < .001; 
controlling	for	Length	and	Time:	n = 67,	r = .40,	p < .001).	Thus,	devel-
opmental	improvements	in	the	ANS	appear	to	be	independent	of	the	
development	of	non-	numeric	dimensions,	including	area,	density,	line	
length,	and	time,	even	over	the	large	age	range	we	tested.

We	also	found	that	each	other	dimension	correlated	with	age	even	
when	controlling	for	the	other	two	tested	in	that	condition	(Figure	6):	
Area	accuracy	correlated	with	age	when	controlling	for	Number	and	
Density	(r = .21; n = 89;	p < .05),	Density	accuracy	correlated	with	age	
when	controlling	for	Number	and	Area	(r = .30; n = 89;	p < .01),	Length	
correlated	with	 age	when	 controlling	 for	Number	 and	Time	 (r = .30; 
n = 84;	 p < .01),	 and	 Time	 correlated	with	 age	when	 controlling	 for	
Number	 and	 Length	 (r = .37; n = 84;	 p < .001).	 These	 results	 were	
near-	identical	–	albeit	 slightly	weaker	–	when	examining	w	 for	each	
dimension:	Area	(rho	=	−.33;	p = .02),	Density	(rho	=	−.25;	p = .08)	and	
Time	(rho	=	−.35;	p < .05).	Length	w,	however,	did	not	correlate	with	
age	when	controlling	for	Time	and	Number	(r =	−.16;	n = 26; p = .26);	
this	result	 is	probably	because	the	w	model	eliminates	children	who	
guessed	 randomly,	 showing	 that	 line-	length	 development	 probably	
occurs	even	earlier	 than	 the	above	accuracy	analysis	 shows.	As	dis-
cussed	below,	 this	 suggests	 that	 each	dimension	may,	 in	 turn,	 have	
an	important	and	domain-	specific	developmental	factor,	and	provides	
strong	evidence	against	a	generalized	magnitude	system.

As	noted	above,	one	consequence	of	 this	 result	 is	 that	domain-	
general	factors,	such	as	attention,	parietal	lobe	development,	or	work-
ing	memory,	are	unlikely	to	be	the	sole	drivers	of	ANS	development:	
because	 each	 discrimination	 task	 puts	 a	 significant	 load	 on	 these	
domain-	general	 factors	 (e.g.	 the	Time	 task	 required	children	 to	seri-
ally	remember	the	duration	of	each	tone	before	comparing	it	with	the	
other),	 controlling	 for	 the	 four	 non-	numeric	 dimensions	 should	 also	
incidentally	control	for	the	majority	of	these	ancillary,	domain-	general	
individual	differences.

3.6 | Role of inhibitory control

Recently,	Gilmore	et	al.	(2013)	suggested	that	individual	differences	in	
the	ANS	might	be	largely	reflective	of	differences	in	inhibitory	control:	
Incongruent	trials	–	those	in	which	total	surface	area	and	number	disa-
gree	in	the	answer	–	require	the	participant	to	actively	inhibit	the	non-	
numeric	dimensions	competing	for	the	response.	Given	that	inhibitory	
control	is	well	known	to	develop	with	age	(Dowsett	&	Livesey,	2000;	
Munakata	et	al.,	2011),	could	the	developmental	improvements	in	the	
ANS	be	merely	reflecting	these	improvements	in	inhibitory	control?

In	order	to	assess	whether	the	development	of	inhibitory	control	
could	 account	 for	 our	 results,	we	 examined	 children’s	 performance	
on	the	Number	task	Congruent	vs.	 Incongruent	trials	and	correlated	
them	with	age.	We	found	an	approaching	but	non-	significant	differ-
ence	between	Congruent	 (M = 71.4%;	SD	=	15.4%)	and	Incongruent	
trials	 [M = 69.14%;	 SD	 =	 18.4%;	 t(197)	=	1.56,	 p = .11].	 In	 addition,	
and	despite	the	 large	sample	size,	we	found	no	correlation	between	
the	 Congruent/Incongruent	 difference	 and	 age	 (Figure	7;	 r =	−0.07;	
p = .35).	This	difference	remained	non-	significant	even	in	our	young-
est	sample	of	3-	year-	olds	[t(23)	=	0.03;	p = .50].	Similarly,	a	one-	way	
ANOVA	 over	 all	 Age	 Groups	 with	 the	 Congruent/Incongruent	 dif-
ference	 failed	 to	 find	 a	main	 effect	 of	Age	Group	 [F(1,	196)	=	1.80;	
p = .18].

Our	data	point	to	the	conclusion	either	that	inhibitory	control	can-
not	 account	 for	 the	 development	 of	ANS	 precision,	 or	 alternatively	
that	the	Congruent/Incongruent	difference	is	not	a	good	measure	of	
inhibitory	control.	In	support	of	the	measure,	however,	we	did	find	a	

TABLE  3 The	parameters	of	the	best-	fit	logistic	growth	models	for	each	dimension	across	all	participants

Dimension DV Peak value (a) Age of onset (1/−b) Growth rate (c)
Approximate age of 
maturity (SE)

Number Accuracy 84.6	(2.14) 1.55	(5.59) 0.33	(0.04) 15.6	(2.14)

w 0.16	(0.02) 1.58	(0.40) 0.56	(0.08) 11.71	(0.41)

Area Accuracy 92.1	(2.16) 2.64	(4.11) 0.33	(0.06) 14.8	(2.17)

w 0.09	(0.01) 0.68	(0.81) 0.89	(0.22) 8.37	(0.84)

Density Accuracy 75.5	(3.90) 3.50	(3.79) 0.20	(0.05) 22.95	(3.91)

w 0.26	(0.08) 2.35	(0.99) 0.23	(0.13) 24.13	(0.99)

Line	length Accuracy 93.7	(2.37) 1.81	(2.98) 0.39	(0.09) 13.02	(2.40)

w 0.05	(0.01) 0.56	(0.41) 0.29	(0.07) 11.92	(0.46)

Time Accuracy 82.3	(3.29) 2.22	(4.25) 0.25	(0.05) 19.39	(3.30)

w 0.20	(0.03) 0.60	(0.82) 0.64	(0.14) 14.69	(0.83)
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significant	correlation	between	the	Congruent/Incongruent	difference	
in	the	Number	task	and	Time	task	accuracy,	even	when	controlling	for	
Age	[r(82)	=	−.30,	p < .01],	as	would	be	expected	given	that	the	serial	
nature	of	the	Time	task	places	a	higher	load	on	working	memory	and	
executive	control	(Droit-	Volet	et	al.,	2008).	We	thus	believe	that	the	
most	 likely	conclusion	 is	 that	 the	Congruent/Incongruent	difference	
can	(in	part)	depend	on	inhibitory	control,	but	that	this	factor	does	not,	
in	turn,	drive	the	development	of	ANS	precision.

4  | GENERAL DISCUSSION

From	early	in	life,	children	have	an	intuitive	and	automatic	representa-
tion	of	number	–	an	Approximate	Number	System	(ANS).	Despite	its	

ubiquity,	the	ANS	undergoes	significant	development	from	infancy	to	
adulthood.	In	order	to	determine	which	factors	are	the	primary	drivers	
of	 this	development,	we	 tested	a	 large	sample	of	2-		 to	12-	year-	old	
children	and	adults	on	five	discrimination	tasks:	number,	area,	density,	
length,	and	time.	In	addition	to	being	the	first	to	provide	estimates	of	
accuracy	and	Weber	fractions	for	each	of	these	dimensions	across	a	
broad	age	range,	we	report	on	three	major	findings.	First,	we	find	that	
the	developmental	trajectory	of	the	ANS	is	distinct	from	the	develop-
mental	trajectory	of	area,	density,	length,	and	time	perception:	while	
ANS	precision	is	at	adult-	like	levels	by	adolescence,	time	and	density	
do	not	fully	develop	until	early	adulthood;	length	and	area,	meanwhile,	
develop	either	at	the	same	time	as	or	sooner	than	the	ANS.	Second,	
we	find	that	ANS	accuracy	and	Weber	fractions	continue	to	improve	
with	 age,	 even	when	 individual	 differences	 in	 area,	 density,	 length,	

F I G U R E  6 The	partial	correlations	
between	each	dimension	and	age	when	
controlling	for	the	other	two	dimensions.	
All	six	partial	correlations	are	significant	at	
p	<	.05
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and	time	are	controlled	for.	Hence,	ANS	development	is	independent	
from	the	four	tested	dimensions.	Finally,	we	find	that	the	difference	
between	Incongruent	and	Congruent	ANS	trials	–	thought	to	index	a	
participant’s	ability	to	inhibit	non-	numeric	cues	(Gilmore	et	al.,	2013)	
–	does	not	correlate	with	age	and	cannot	explain	the	development	of	
ANS	precision.

Together,	these	results	suggest	that	developmental	improvements	
in	the	ANS	are	not	driven	by	improvements	in	other	non-	numeric	quan-
tities,	 including	area,	density,	 length,	and	time.	 In	turn,	these	results	
are	 incompatible	 with	 recent	 suggestions	 that	 ANS	 discrimination	
tasks	are	significantly	biased	by	children’s	attention	to	or	the	use	of	
non-	numeric	cues	such	as	area,	convex	hull,	etc.	(e.g.	Cantrell	&	Smith,	
2013;	Clayton,	Gilmore,	&	Inglis,	2015;	Defever	et	al.,	2013;	Gebuis	&	
Reynvoet,	2012;	Szucs	et	al.,	2013).	In	other	words,	by	controlling	for	
the	four	dimensions	most	often	claimed	to	be	used	during	ANS	tasks,	
we	have	shown	that	area,	density,	 length,	and	time	are	not	the	sole	
or	even	the	primary	contributors	to	the	developmental	and	individual	
differences	in	ANS	precision.	The	distinct	and	independent	develop-
mental	trajectories	are	also	a	challenge	to	the	generalized	magnitude	
system	theory,	and	are	instead	more	consistent	with	findings	showing	
independence	between	number,	space,	and	time,	and	place	the	rela-
tionships	between	various	dimensions	largely	due	to	shared	decision-	
making	 components	 (Anobile,	Cicchini,	&	Burr,	 in	 press;	Cappelletti,	
Freeman,	 &	 Cipolotti,	 2011;	 Castelli,	 Glaser,	 &	 Butterworth,	 2006;	
Odic	et	al.,	2016;	Odic	&	Halberda,	2015;	Odic,	Libertus,	et	al.,	2013;	
Starr	&	Brannon,	2015b).

Our	results	are	also	inconsistent	with	the	idea	that	improvements	
in	 the	 ANS	 are	 driven	 solely	 by	 domain-	general	 improvements	 in	
attention,	working	memory,	 decision	making,	 or	 parietal	 lobe	matu-
ration,	as	 these	factors	would	be	shared	between	number	and	non-	
numeric	quantity	discrimination	 tasks	 (Droit-	Volet	et	al.,	2008;	Odic	
et	al.,	2016;	Pinel	et	al.,	2004;	Van	Opstal	&	Verguts,	2013).	Similarly,	
we	found	no	evidence	that	ANS	development	is	driven	by	children’s	
improving	ability	to	attend	to	numeric	cues.	Although	it	is	possible	that	
the	ANS	 discrimination	 task	 places	 a	 load	 on	 some	 domain-	general	
factor	that	is	not	used	during	area,	density,	length,	or	time	discrimina-
tion,	this	explanation	seems	unlikely.	Consider,	for	example,	that	we	
found	no	influence	of	–	or	even	correlation	with	–	performance	on	the	

density	task,	which	even	presented	the	stimuli	as	spatially	separated	
blue	and	yellow	dots.	Ultimately,	we	do	not	wish	to	claim	that	domain-	
general	 factors	have	no	 impact	on	ANS	performance,	as	other	work	
has	 clearly	 shown	 that	 they	do	 (Droit-	Volet	 et	al.,	 2008),	 but	 rather	
we	believe	that	our	work	shows	that	these	are	not	the	only	nor	the	
primary	factors	that	drive	ANS	development.

Instead,	our	results	point	to	an	important	source	of	domain-	specific	
maturation	or	experience	that	drives	improvements	in	ANS	precision.	
Our	results	do	not,	however,	identify	what	these	domain-	specific	fac-
tors	are.	Broadly	speaking,	these	improvements	may	be	related	either	
to	children’s	experience	with	number	(e.g.	learning	to	manipulate	num-
bers	in	the	context	of	mathematics),	or	to	domain-	specific	maturation	
of	the	ANS	itself.	Previous	work	by	Piazza	et	al.	(2013),	investigating	
ANS	development	 in	 the	Amazonian	Munduruku	 tribe,	 showed	 that	
domain-	specific	education	in	mathematics	significantly	improves	ANS	
precision.	However,	as	 the	most	dramatic	changes	 in	ANS	precision	
occur	prior	 to	age	7	–	when	most	children	 in	our	sample	begin	 for-
mal	schooling	–	factors	outside	education	must	also	play	a	role.	One	
especially	 likely	 candidate	 is	 the	 maturation	 of	 the	 computations	
that	 encode	 the	ANS	 (e.g.	 the	 object	 localization	map	 proposed	 by	
Dehaene	and	Changeux,	1993),	or	the	maturation	of	the	specific	neu-
rons	that	encode	number	 in	the	visual	system	and	the	parietal	 lobe.	
For	 example,	 Burr	 and	Ross	 (2008;	 see	 also	Anobile	 et	al.,	 in	 press;	
Odic	&	Halberda,	2015;	Ross	&	Burr,	2010)	argue	that	number	is	a	pri-
mary	visual	feature,	encoded	by	a	set	of	dedicated	neurons	in	the	early	
visual	cortex;	as	a	result,	the	development	of	ANS	precision	may	also	
be	driven	by	the	development	and	tuning	of	domain-	specific	neurons	
in	the	early	visual	system.	Our	work	suggests	that	–	whether	at	 the	
level	of	encoding	or	of	representations	–	the	cognitive	processes	that	
most	tightly	track	individual	and	developmental	differences	are	disso-
ciable	for	number	compared	with	the	other	four	dimensions.	Exploring	
these	possibilities	will	be	an	important	avenue	for	future	work.

Although	 the	 generalized	 magnitude	 system	 has	 often	 been	
hypothesized	 to	 persist	 into	 adulthood	 (e.g.	 Bueti	 &	Walsh,	 2009;	
Lu	et	al.,	2011;	Xuan	et	al.,	2007),	developmental	psychologists	have	
more	 recently	 claimed	 that	newborns	begin	with	 a	unified,	 ‘one-	bit’	
sense	of	magnitude	 that	differentiates	with	experience	and	matura-
tion	(Cantrell	&	Smith,	2013;	Lourenco	&	Longo,	2011).	Although	our	
data	do	not	provide	any	direct	evidence	against	a	differentiation	view,	
they	do	provide	important	caveats	for	such	a	theory.	First,	our	results	
show	that	different	dimensions	develop	at	different	rates	–	while	area	
and	 length	 develop	 quickly,	 peaking	 in	 early	 childhood,	 density	 and	
time	 do	 not	 fully	 develop	 until	 young	 adulthood.	 Under	 the	 differ-
entiation	view,	such	a	pattern	would	 imply	that	children	learn	about	
length	and	area	prior	to	learning	about	time	and	density.	Hence,	any	
potential	learning	mechanism	that	allows	for	differentiation	between	
magnitudes	will	have	to	claim	that	learning	about	some	spatiotempo-
ral	properties	 (e.g.	area,	 length)	 is	easier	 than	 learning	about	others.	
Second,	our	results	provide	a	developmental	trajectory	for	any	poten-
tial	differentiation:	on	average,	we	found	that	differences	in	accuracy	
and	precision	between	the	five	tested	dimensions	peak	at	about	age	
7	(and	subsequently	decrease	and	stabilize).	Finally,	our	work	suggests	
that	–	once	differentiated	–	each	dimension	follows	its	own	trajectory,	

F I G U R E  7 The	correlation	between	Age	and	each	participant’s	
difference	score	between	Congruent	and	Incongruent	trial	accuracy	
(thought	to	index	inhibitory	control).	We	found	no	significant	
correlation	between	age	and	this	Incongruent	trial	difference
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independent	of	the	others.	Thus,	whatever	the	common	currency	or	
shared	resources	between	number,	area,	density,	length,	and	time	are,	
they	are	not	the	ones	primarily	driving	developmental	or	individual	dif-
ferences	in	accuracy	and	precision.

Interestingly,	beyond	identifying	that	ANS	precision	develops	inde-
pendently	of	the	other	four	dimensions,	we	further	found	that	each	of	
the	four	non-	numeric	dimensions	showed	the	same	domain-	specific	
developmental	pattern	as	the	ANS:	area,	density,	length,	and	time	all	
continued	to	develop	with	age,	even	when	controlling	for	the	ANS	and	
the	other	tested	dimension.	These	results	broadly	suggest	that	–	to	the	
extent	that	each	dimension	may	be	modular	or	independent	from	the	
other	 from	preschool	onwards	–	some	non-	shared	 factor	drives	 the	
development	of	each.	By	analogy,	consider	that	many	of	children’s	lan-
guage	abilities,	such	as	knowledge	of	open-	class	vocabulary,	develop	
significantly	before	many	spatial	manipulation	and	navigation	abilities	
(Landau	&	Ferrara,	 2013;	 see	Karmiloff-	Smith	et	al.,	 2004	 for	 a	dis-
cussion	of	distinct	developmental	trajectories	within	face	perception).	
In	a	similar	way,	children’s	perception	of	area	and	length	may	mature	
significantly	earlier	compared	with	density	and	time.

One	 crucial	 point	 concerns	whether	 children	 relied	on	 any	non-	
numeric	 cues	 during	 the	 Number	 discrimination	 task.	 Traditionally,	
differences	 between	 the	 congruent	 and	 incongruent	 trials	 have	
been	used	 to	suggest	 the	use	of	non-	numeric	cues	during	ANS	dis-
crimination	tasks	 (Dakin	et	al.,	2011;	Defever	et	al.,	2013;	Gebuis	&	
Reynvoet,	2012;	Gebuis	&	Van	Der	Smagt,	2011;	Hurewitz,	Gelman,	
&	Schnitzer,	2006).	We,	however,	failed	to	observe	this	difference	at	
any	age,	 including	 for	 the	youngest	 section	of	our	 sample	who	per-
formed	at-		or	near-	chance	on	the	Number	task.	Furthermore,	we	find	
that	 individual	 differences	 in	ANS	 acuity	 continue	 to	 correlate	with	
age,	even	when	controlling	for	the	other	dimensions.	One	possibility	
is	that	children	in	our	sample	used	non-	numeric	cues	in	a	haphazard	
and	inconsistent	way	that	could	not	be	detected	through	the	reported	
congruency	effects	and	that,	 in	addition,	this	use	yields	a	non-	linear	
relationship	between	number	and	the	four	dimensions	that	could	not	
be	statistically	partialled	out.	Such	an	alternative	explanation	 leaves	
much	to	be	answered,	such	as	what	aspect	of	number	performance	
continues	 to	 develop	when	 controlling	 for	 individual	 differences	 in	
area,	density,	length,	and	time;	and,	if	children	do	not	use	non-	numeric	
cues	on	every	trial,	what	 they	use	 instead,	etc.	Although	the	results	
presented	here	are	most	consistent	with	the	idea	of	a	dedicated	sys-
tem	for	approximating	number,	we	do	not	have	direct	evidence	against	
these	alternative	accounts	and	they	remain	open	routes	of	inquiry.

An	important	limitation	of	this	work	is	that	we	could	study	the	chil-
dren	only	cross-	sectionally.	Although	we	do	not	expect	strong	cohort	
effects,	 a	 true	 understanding	 of	 developmental	 trajectories	 would	
ideally	 use	 longitudinal	 data.	 Longitudinal	 data	 would	 also	 capture	
whether	a	developmental	boost	in	one	dimension	leads	to	a	cascade	
of	changes	in	another.

In	 conclusion,	 our	 results	 suggest	 that	 the	 development	 of	ANS	
precision	 is	 independent	 of	 children’s	 perception	 of	 area,	 density,	
length,	or	time.	These	results	place	the	development	of	number,	space,	
and	 time	 representation	 into	 a	 broader	 and	 richer	 developmental	
context	–	showing	both	the	similarities	and	differences	in	how	these	

representations	mature	–	 and	provide	 ample	 opportunity	 for	 future	
work	aimed	at	understanding	how	number	representations	are	actu-
ally	extracted	from	a	visual	scene,	and	how	domain-	specific	ANS	rep-
resentations	may	contribute	 to	a	variety	of	other	 cognitive	abilities,	
including	mathematics.
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NOTES
1	Owing	to	an	experimenter	error,	eight	children	were	running	in	a	Number/
Area/Lines	condition.	Excluding	these	children	changes	none	of	the	results	
reported	here,	and	 in	order	 to	maximize	our	 sample	all	of	 these	children	
were	kept	in	the	analyses.

2	An	inspection	of	our	figures	and	tables	reveals	that	our	group	of	2-		and	
3-	year-	olds	 was	 generally	 around	 chance-	levels,	 suggesting	 that	 they	
may	not	have	understood	the	task.	Nevertheless,	removing	this	group	of	
children	did	not	change	any	of	our	results	(e.g.	the	correlation	between	
ANS	and	age	becomes	 r	=	.61,	p	<	.001,	when	this	group	of	24	partici-
pants	is	removed).
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